ring),其基本思想是用统计的方法得出所有用户对物品或者信息的偏好,然后发现与当前用户口味和偏好相似的“邻居”用户群,基于某个邻居的历史偏好信息,为当前用户进行物品的推荐,所以该方法也称基于用户的协同过滤(User-based Collaborative Filtering)或基于邻居的协同推荐(Neighbor-based Collaborative Filtering);二是基于模型的协同过滤推荐(Model-based Collaborative Filtering),是指根据用户和物品的直接历史点击或购买记录,来计算物品和物品之间的相似度,得出一个模型,然后根据用户的历史偏好的物品信息,将挖掘到的类似的物品推荐给用户,即用此模型进行预测。(余力)
与传统文本过滤相比,协同过滤有以下优点:一是能够过滤难以进行机器自动基于内容分析的信息,如艺术品、音乐;二是能够基于一些复杂的,难以表达的概念(信息质量、品位)进行过滤;三是推荐具有新颖性。正因为如此,协同过滤在商业应用上也取得了不错的成绩。Amazon、CDNow、MovieFinder都采用了协同过滤的技术来提高服务质量。
项目经理胜任力免费测评PMQ上线啦!快来测测你排多少名吧~
http://www.leadge.com/pmqhd/index.html