的改变。和过去的技术迭代一样,AI一定会取代一些工作,或者一些工作的一部分,但同时也一定会创造一些新的工作机会,或者把一部分既有工作变得更吃重,所不同的是,这样的改变速度更快,频次更多。
先举一个商学院录取流程的例子来看AI如何重塑工作流。商学院MBA的录取流程可以分拆成三个阶段,不同阶段需要配置不同的资源。第一步是推广,也就是鼓励学生申请,让更多潜在学生了解MBA课程。第二步是评判,也就是对申请人进行筛选,通常需要大量人工去做。第三步是给出结果,尽可能鼓励合格的申请人接受录取通知书。一个传统的MBA录取流程,会在第二阶段配置大量有经验的人力,而且会限制推广,担心人力无法及时处理大量的申请。
AI在商学院录取流程中的应用,会从第二环节开始,培养出特别擅长对申请人进行筛选和评判的AI。AI替代手动筛选评判申请人这一流程的同时,也会让资源可以配置到其他流程中,比如没有了筛选的人力瓶颈,商学院会愿意加大市场宣传力度以吸引更多的申请人,甚至可能免除申请费,因为AI审核的成本接近为零。从这一角度去思考,AI给商学院带来的改变并不是简单地替代某项工作,而是会重新安排招生三个步骤的资源分配,AI给工作流带来的改变,远比简单的自动化要深远地多。
那AI给未来的工作会带来什么样的改变呢?
第一种情况,当工作的一部分职能被自动化了之后,工作本身反而变得更重要了。这在PC时代就曾经出现过。比如Excel的出现让财务的话语权更大,而不是让更多会计师失业。同样,工作的一部分被自动化会让那些需要更多人判断的工作变得更重要也更有价值。
第二种情况,机器的确会替代一些工作。比如说亚马逊分拣仓里的分拣员。亚马逊的物流配送分拣仓雇佣了4万多人,因为人仍然比机器能更快地分拣货物。但是亚马逊也意识到,只要人在整个流程中存在,物流配送就无法完全自动化。亚马逊2012年收购机器人公司Kiva就是要向自动化迈出一大步。未来当机器完全取代人类分拣员之后,仓库就可以变成黑灯仓库,节约照明和空调的电费,而且可以24小时不停歇地工作,大大提升效率。
第三种情况,AI会重塑一些工作,取代一部分职能,同时增加另一部分智能。比如说放射科医生。放射科医生主要的工作是解读X光片或者CT影像。现在机器已经可以做得更好了。但这并不意味着放射科医生的工作会被替代。他们的工作会发生大的变化。一方面,他们仍然需要向其他医生解释AI得出的影响判断,另一方面为新机器的AI提供训练也是他们未来的工作之一。
第四种情况,则是一些工作的实质会发生改变。比如说,当自动驾驶被普遍应用之后,校车司机会失业么?乍一看下来答案是肯定了,因为车辆可以自动驾驶了,不再需要司机。但事实上校车司机还有一项很重要的职责,就是在车上维护秩序,确保孩子们的安全。所以,当司机开车的这项主要任务被AI取代之后,会凸显出另外一些重要的任务,比如说在校车上管理孩子。校车司机工作的实质发生了变化,但是并没有被取代。
当然,未来将会有更多“人+机器”的工作场景。在《人+机器》这本书中,身为埃森哲咨询师的作者就提出,人机协作在很多场景中会比人或者机器单独完成工作要更有效。《人+机器》把产业转型分成三个阶段,100多年前从福特开始的标准化流程的转型,1970年代开始的数字化转型,也就是利用IT技术的自动化转型,而现在这一阶段AI推动了人机协作的适应性转型阶段。标准化转型让批量大规模廉价生产成为可能,自动化转型通过流程优化和流程再造,让机器能够取代许多人的岗位,提升效率。适应性转型又有所不同,人+机器可以有很强的适应性