没有技术人员什么事了。
当然,也不难想象,一个真正懂看数据的测试人员,就好比一个真正懂用算法的业务人员一样难得。
业务与数据的关系
真实(而不是杜撰、模拟、伪造)、可量化、可被记录的数据一定会反映真实世界某方面的业务情形。而现实当中很多业务场景都可由数据体现出来。
零售是业务场景最繁多且最贴近我们生活的行业,可以从中找到很多方便理解的例子。
当你在一个酷热难耐的夏天上午10点,走进位于公司附近的全家便利店,使用微信支付,花了3.5元,买了一瓶无糖330ml摩登罐的可乐,而且刷会员卡攒了100积分,而收银员MM返回给了你一张POS单据,这时你所发生的这一切都已经通过收银记录在了全家的数据库里。更糟糕的是,店里的摄像头也已经把你在店里的一举一动录了下来了,转化成为一帧帧图像数据。
这就是,业务数据化。
店长通过数据分析发现,最近3.5元330ml摩登罐可乐的销量比上月增长了20%,而消费者中75%是20-35岁的男性,相比之下,300ml塑料瓶装的可乐销量却下滑40%。店长权衡比较了一下,300ml塑料瓶装可乐利润低,330ml摩登罐可乐目前更受年轻人欢迎,考虑到日渐增长的租金压力,做了一个大胆的决定——下架300ml塑料瓶装可乐,增加330ml摩登罐可乐的商品。(又拿数据说话了。)
这就是,数据业务化。
或者,数据驱动业务。
当我开始接触一个行业时,我通常会花2-3周的时间去了解这个行业的业务,然后就大致清楚这个行业有什么样的数据,可以做哪方面的分析,解决什么问题。
当遇到不好理解的分析结果时,我经常使用业务联想法,设身处地去体会结果所反映的业务场景是什么样的。
如何了解业务?
这个说大了,就是如何看这个世界。每个人有每个人的方法论,每个人有每个人的世界观,每个人有每个人的逻辑思维。
我们都知道,观念的转变是最难的,也有很多不确定性。有些人可能因为自己的切身体会一天就改变了之前几十年根深蒂固的看法,有些人任由三姑六婆苦口婆心地劝说就是不肯改变自己的择偶观,却有可能因为自己年岁渐大不断降低自己的标准。
但最好也及早要形成科学的思考方法,帮助正确地理解这个世界。
以“面-线-点”的方式可以较为全面、系统、深入地了解一个行业,然后是某个垂直领域,最后再到具体业务场景。
佛系文化的流行,使得年轻一代降低对这个世界的关注度,一切都无所谓,一切都漠不关心。
这个世界从来没有变好过,但我们每个人都是这个世界的匆匆过客,都是行走在自己的人生路上不断领略这个世界的美与丑。这世间的风景,这世间的悲欢离合,如果我们积极地探索与领悟,也不枉来这世间走一遭。
保持好奇心,可以驱动我们的思考,强化我们的认知,丰富我们的内在。
这是我想说的第二个方面。
怀有好奇心,就会渐渐地敏锐观察这个世界,多问自己一些为什么。
我家附近原来有个沃尔玛超市,现在地产商将它装修一番,引入了不少餐厅,刚开张不久,我就去那里吃饭,吃的是烤鸭,一个多两个月后,再去那里吃饭,发现有一半的餐厅已经关门了。
在去地铁站的那条路上,每天人流如梭,一点点,即使到了深夜,依然有很多人在门口排队买奶茶。然而,仅仅隔了一个店铺的喜茶,做不下去,关门了。两三个月前又换成粉店,路转粉。每天下班路过时,发现店里顾客不到10个,门可罗雀。
为什么每家一点点奶茶店门口,不管是什么时候都是很多人,他们是托儿还是真的顾客?
因为喜欢新鲜,不喜欢在冰箱里存太多菜,且附近没有