项目管理资源网

您的位置:项目管理资源网 >> 新闻

傅盛:深度学习是什么?

2016/7/11 11:53:05 |  2265次阅读 |  来源:傅盛   【已有0条评论】发表评论

 上一篇,我讲了为什么坚信人工智能。今天已成历史。

  人工智能,就好像第四次工业革命,正从学术界的私藏,转变为一种能够改变世界的力量。尤其,以深度学习取得的进步为显著标志。

  它让匍匐前进60年的人工智能一鸣惊人。

  我们正降落到一片新大陆。深度学习带来的这场重大技术革命,有可能颠覆过去20年互联网对技术的认知,实现技术体验的跨越式发展。

  那么,深度学习到底是什么?怎么理解它的重要性?

  我们先从概念和现象入手。

  我总结了一句话,学术上看未必严谨,但从我的理解角度看——深度学习是基于多层神经网络的,海量数据为输入的,规则自学习方法。

  这里包含了几个关键词:

  第一个关键词叫多层神经网络。

  深度学习所基于的多层神经网络并非新鲜事物,甚至在80年代被认为没前途。但近年来,科学家们对多层神经网络的不断算法优化,使它出现了突破性的进展。

  以往很多算法是线性的。而这世界上大多数事情的特征是复杂非线性的。比如猫的图像中,就包含了颜色、形态、五官、光线等各种信息。深度学习的关键就是通过多层非线性映射将这些因素成功分开。

  为什么要深呢?多层神经网络比浅层的好处在哪儿呢?

  简单说,就是可以减少参数。因为它重复利用中间层的计算单元。我们还是以认猫为例好了。它可以学习猫的分层特征:最底层从原始像素开始学习,刻画局部的边缘和纹;中层把各种边缘进行组合,描述不同类型的猫的器官;最高层描述的是整个猫的全局特征。

  它需要超强的计算能力,同时还不断有海量数据的输入。特别是在信息表示和特征设计方面,过去大量依赖人工,严重影响有效性和通用性。深度学习则彻底颠覆了“人造特征”的范式,开启了数据驱动的“表示学习”范式——由数据自提取特征,计算机自己发现规则,进行自学习。

  你可以理解为——过去,人们对经验的利用,靠人类自己完成。在深度学习呢?经验,以数据形式存在。因此,深度学习,就是关于在计算机上从数据中产生模型的算法,即深度学习算法。

  问题来了,几年前讲大数据,以及各种算法,与深度学习有什么区别呢?

  过去的算法模式,数学上叫线性,x和y的关系是对应的,它是一种函数体现的映射。但这种算法在海量数据面前遇到了瓶颈。国际上著名的ImageNet图像分类大赛,用传统算法,识别错误率一直降不下去,上深度学习后,错误率大幅降低。在2010年,获胜的系统只能正确标记72%的图片;到2012年,多伦多大学的 Geoff Hinton利用深度学习的新技术,带领团队实现了85%的准确率。2015年的ImageNet竞赛上,一个深度学习系统以96%的准确率第一次超过了人类(人类平均有95%的准确率)。

  计算机认图的能力,已经超过了人。尤其图像和语音等复杂应用,深度学习技术取得了优越的性能。为什么呢?其实就是思路的革新。

  举几个脑洞大开的例子。

  (1)

  先说计算机认猫。

  我们通常能用很多属性描述一个事物。其中有些属性可能很关键,很有用,另一些属性可能没什么用。我们就将属性被称为特征。特征辨识,就是一个数据处理的过程。

  传统算法认猫,也是标注各种特征去认。就是大眼睛,有胡子,有花纹。但这种特征写着写着,有的猫和老虎就分不出来,狗和猫也分不出来。这种方法叫——人制定规则,机器学习这种规则。

  深度学习方法怎么办呢?直接给你百万张图片,说这里有猫,再给你上百万张图,说这里没猫。然后再训练一个深度网络,通过深度学习自己去学猫的特征,计算机就知道了,谁是猫。

 

    项目经理胜任力免费测评PMQ上线啦!快来测测你排多少名吧~

    http://www.leadge.com/pmqhd/index.html

“项目管理生根计划”
企业项目经理能力培养和落地发展方案下载>>

分享道


网站文章版权归原作者所有,如有认为侵权请联系我们,将于1个工作日内作出处理!
网友评论【 发表评论 0条 】
网友评论(共0 条评论)..
验证码: 点击刷新

请您注意护互联网安全的决定》及中华人民共和国其他各项有关法律法规或间接导致的民事或刑事法律责任
·您在项目管理资源网新闻评论发表的作品,项目管理资源网有权在网站内保留、转载、引用或者删除
·参与本评论即表明您已经阅读并接受上述条款